If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35^2=b^2+20^2
We move all terms to the left:
35^2-(b^2+20^2)=0
We add all the numbers together, and all the variables
-(b^2+20^2)+1225=0
We get rid of parentheses
-b^2+1225-20^2=0
We add all the numbers together, and all the variables
-1b^2+825=0
a = -1; b = 0; c = +825;
Δ = b2-4ac
Δ = 02-4·(-1)·825
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{33}}{2*-1}=\frac{0-10\sqrt{33}}{-2} =-\frac{10\sqrt{33}}{-2} =-\frac{5\sqrt{33}}{-1} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{33}}{2*-1}=\frac{0+10\sqrt{33}}{-2} =\frac{10\sqrt{33}}{-2} =\frac{5\sqrt{33}}{-1} $
| -5x+4+3x=-1-4x-5 | | i+8=42 | | t/3+8=5t/4 | | 2x+21=2(2x+21) | | 3a+10=8a+20 | | i-8=42 | | (2x+10)+48=-80 | | 2x+21=2x+21 | | -5x=240 | | 3^4x=3^3 | | 10+-5x=20 | | 1/2x+14=-40 | | 16x+48=10x+60 | | 2x-5=2(x+5)-10 | | 2.5x^2=42x | | 36=y12 | | n.4n=30 | | 0x=150 | | −7c=63 | | 14=-5x+12x | | ½=⅖z | | x+2x+3x+4x+5x+6x+7x+8x+9x=x+2x+3x+4x+5x+6x+7x+8x+9x | | 10+k/2=-2 | | 6(y+6)-4=63 | | .7(8d+1.8)=-14 | | k-10÷2=-2 | | 65+0.75x=55+0.85x | | h-4=-2 | | 15√x-6=99 | | 4/5=;/15n= | | 12=2x2x3 | | 0.24(6)+0.04x=0.012(6+x) |